21413 measured reflections

 $R_{\rm int} = 0.021$

11446 independent reflections

7890 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[[aquatris(μ_3 -hexamethylenetetramine- $\kappa^3 N, N', N''$)tris(p-toluenesulfonato- κO)trisilver(I)] trihydrate]

Hua Wu,* Meng-Xiang Shang and Shao-Ping ShangGuan

Heilongjiang Agricultural Vocational and Technical College, JiaMuSi, HeiLongJiang 154007 People's Republic of China Correspondence e-mail: hljwuhua@yahoo.com.cn

Received 11 November 2010; accepted 22 November 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; disorder in main residue; R factor = 0.038; wR factor = 0.097; data-to-parameter ratio = 17.6.

There are three Ag^{I} cations, three *p*-toluenesulfonate (pts) anions, three hexamethylenetetramine (hmt) molecules and four water molecules in the asymmetric unit of the title coordination polymer, $\{[Ag_3(C_7H_7O_3S)_3(C_6H_{12}N_4)_3(H_2O)]$. $3H_2O_{l_n}$. Two of the pts anions show positional disorder of their O atoms in 0.60:0.40 and 0.50:0.50 ratios. The Ag^I ion is coordinated by three hmt molecules in an approximate trigonal-planar AgN3 arrangement. In each case, longer Ag-O bonds to a water molecule and a pts anion complete a distorted trigonal-bipyramidal AgN₃O₂ geometry for the metal ion. In the crystal, the bridging hmt molecules and pts ions generate a wave-like layer parallel to (001) and O-H···O hydrogen-bonding interactions consolidate the packing.

Related literature

For background to metal-coordination networks containing both sulfonate anions and N-bonded ligands, see: Côté & Shimizu (2003); Zhang et al. (2001).

Experimental

Crystal data

[Ag₃(C₇H₇O₃S)₃(C₆H₁₂N₄)₃- $\beta = 95.657 \ (3)^{\circ}$ V = 4963.7 (3) Å³ (H_2O)]·3H₂O Z = 4 $M_r = 1329.82$ Monoclinic, $P2_1/n$ Mo $K\alpha$ radiation a = 17.3181(5) Å $\mu = 1.37 \text{ mm}^{-1}$ b = 10.7028 (3) Å T = 293 Kc = 26.9110 (11) Å $0.30 \times 0.25 \times 0.22 \text{ mm}$

Data collection

Oxford Diffraction Gemini R Ultra diffractometer Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) $T_{\min} = 0.672, \ T_{\max} = 0.728$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	H atoms treated by a mixture of
$wR(F^2) = 0.097$	independent and constrained
S = 0.99	refinement
11446 reflections	$\Delta \rho_{\rm max} = 0.90 \ {\rm e} \ {\rm \AA}^{-3}$
650 parameters	$\Delta \rho_{\rm min} = -1.05 \text{ e } \text{\AA}^{-3}$
12 restraints	

Table 1

Selected bond lengths (Å).

Ag1-N1	2.362 (2)	Ag2-N4	2.374 (2)
Ag1-N9 ⁱ	2.367 (3)	Ag3-N3 ⁱⁱ	2.315 (3)
$Ag1 - N10^{ii}$	2.388 (3)	Ag3-N8	2.358 (3)
Ag2-N5	2.347 (2)	Ag3-N11	2.394 (2)
Ag2–N7 ⁱⁱ	2.365 (3)		

Symmetry codes: (i) x - 1, y, z; (ii) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $-z + \frac{3}{2}$.

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} 01W - H1WA \cdots 08^{ii} \\ 01W - H1WB \cdots 06^{ii} \\ 02W - H2WA \cdots 05^{iii} \\ 02W - H2WB \cdots 01^{iv} \\ 03W - H3WA \cdots 02^{v} \\ 03W - H3WB \cdots 05 \\ 04W - H4WB \cdots 07^{iii} \end{array}$	0.87 (2) 0.82 (2) 0.83 (2) 0.84 (2) 0.80 (2) 0.80 (2) 0.88 (2)	1.92 (2) 2.10 (2) 2.16 (2) 1.83 (3) 2.45 (3) 2.15 (2) 1.99 (3)	2.782 (5) 2.907 (4) 2.958 (4) 2.612 (6) 3.096 (7) 2.908 (5) 2.838 (7)	175 (4) 166 (4) 163 (4) 155 (4) 139 (4) 160 (4) 160 (4)

Symmetry codes: (ii) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (iii) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (iv) x + 1, y, z; (v) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$

Data collection: CrvsAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

We thank the Heilongjiang Province Education Department for support (project 'The Study of Silver Sulfonates containing Neutral Ligands', serial No. 11535035).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5739).

References

Côté, A. P. & Shimizu, G. K. H. (2003). Coord. Chem. Rev., 245, 49-64. Oxford Diffraction (2006). *CrysAlis CCD* and *CrysAlis RED*. Oxford Diffraction Ltd, Abingdon, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Zhang, S.-L., Tong, M.-L., Fu, R.-W., Cheng, X.-M. & Ng, S.-W. (2001). Inorg. Chem. 40, 3562-3569.

Acta Cryst. (2010). E66, m1665-m1666 [doi:10.1107/S1600536810048567]

Poly[[aquatris(μ_3 -hexamethylenetetramine- $\kappa^3 N, N', N''$)tris(*p*-toluenesulfonato- κO)trisilver(I)] trihydrate]

H. Wu, M.-X. Shang and S.-P. ShangGuan

Comment

Metal sulfonate complexes modified by different nitrogen-containing secondary ligands have been of great interest due to their abilities to form various structures, possible extended supramolecular system and good properties (Côté & Shimizu, 2003). Currently, there are some Ag^I sulfonate coordination polymers building from hexamethylenetetramine ligand because of its multidentate coordination mode (Zhang *et al.*, 2001).

In the crystal structure of the title compound, $C_{39}H_{65}Ag_3N_{12}O_{13}S_3$, there are three Ag^I cations, three *p*-toluenesulfonate anions, three hexamethylenetetramine and four water molecules (Fig. 1). Ag1 cation is four-coordinated by three N atoms from three different hexamethylenetetramine ligands $[Ag1-N1 = 2.362 (2), Ag1-N9^i = 2.367 (2), and Ag1-N10^{ii} =$ 2.388 (3)] and one O atom from one *p*-toluenesulfonate ligand [Ag1-O = 2.644 (6) Å] in a distorted tetrahedral coordination geometry. Ag2 cation is five-coordinated by three N atoms from three different hexamethylenetetramine ligands $[Ag2-N5 = 2.347 (2), Ag2-N4 = 2.374 (2) and Ag2-N7^{ii} = 2.365 (2) Å]$, one O atom from one *p*-toluenesulfonate ligand and one water molecule [Ag2-O4 = 2.622 (3) and Ag2-O1W = 2.622 (4) Å] in a trigonalbiyramid coordination geometry. Ag3 cation is also four-coordinated by three N atoms from hexamethylenetetramine ligands $[Ag3-N3^{ii} = 2.315 (3), Ag3-N8 = 2.358 (3), and Ag3-N11 = 2.394 (2) Å]$ and one *p*-toluenesulfonate ligand [Ag3-O9 = 2.438 (5) Å] in a distorted tetrahedral coordination geometry. The Ag^I cations are bridged by hexamethylenetetramine molecules in tridentate modes to generate a two dimensional wave like layer with the *p*-toluenesulfonate ligands hanged up and down (Fig. 2). The intermoleclar hydrogen bonding interactions consolidate the layer.

Experimental

An aqueous solution (10 ml) of *p*-toluenesulfonic acid (0.038 g, 0.3 mmol) was added to solid Ag_2CO_3 (0.041 g, 0.15 mmol) and stirred for several stirred for several minutes until no further CO_2 was given off; and hexamethylenetetramine (0.028 g, 0.2 mmol) was added in. The white precipitate was dissolved by dropwise addition of an aqueous solution of NH₃ (14 *M*). Colourless blocks were obtained by evaporation of the solution for several days at room temperature.

Refinement

The disordered O atoms (O1, O2, O3, O7, and O9) of *p*-toluenesulfonate ligands split over two sites with a total ocuupancy of 1. C-bound H-atoms were geometrically positioned (C—H 0.93 Å) and refined using a riding model, with $U_{iso} = 1.2U_{eq}$ (C). The water H atoms were located in a difference Fourier map and refined with $U_{iso}(H) = 1.5Ueq(O)$.

Figures

Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. [Symmetry codes: (i) x - 1, y, z; (ii) -x + 3/2, y - 1/2, -z + 3/2].

Fig. 2. The two dimensional wave like layer of the title compound.

Poly[[aquatris(μ_3 -hexamethylenetetramine- $\kappa^3 N, N', N''$)tris(*p*-toluenesulfonato- κO)trisilver(I)] trihydrate]

Crystal data

$[Ag_3(C_7H_7O_3S)_3(C_6H_{12}N_4)_3(H_2O)]\cdot 3H_2O$	F(000) = 2704
$M_r = 1329.82$	$D_{\rm x} = 1.779 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 11446 reflections
a = 17.3181 (5) Å	$\theta = 3.0 - 29.3^{\circ}$
b = 10.7028 (3) Å	$\mu = 1.37 \text{ mm}^{-1}$
c = 26.9110 (11) Å	<i>T</i> = 293 K
$\beta = 95.657 (3)^{\circ}$	Block, colorless
$V = 4963.7 (3) Å^3$	$0.30\times0.25\times0.22~mm$
Z = 4	

Data collection

Oxford Diffraction Gemini R Ultra diffractometer	11446 independent reflections
Radiation source: fine-focus sealed tube	7890 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.021$
Detector resolution: 10.0 pixels mm ⁻¹	$\theta_{\text{max}} = 29.3^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$
ω scans	$h = -23 \rightarrow 19$
Absorption correction: multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2006)	$k = -13 \rightarrow 8$
$T_{\min} = 0.672, T_{\max} = 0.728$	$l = -24 \rightarrow 36$
21413 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from neighbouring sites

$wR(F^2) = 0.097$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 0.99	$w = 1/[\sigma^2(F_o^2) + (0.054P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
11446 reflections	$(\Delta/\sigma)_{\text{max}} = 0.002$
650 parameters	$\Delta \rho_{max} = 0.90 \text{ e } \text{\AA}^{-3}$
12 restraints	$\Delta \rho_{\rm min} = -1.05 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and is	sotropic	c or ea	auivalent	isotrop	ic dis	nlacement	parameters +	$(Å^2$)
1 / 00011011011	cironiic	coontantates	<i>cirici i</i> .	sonopic		100000000000000000000000000000000000000	1501100	ie ans	pracement	parameters,	(**	/

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Ag1	0.314657 (14)	0.08332 (2)	0.713161 (11)	0.03692 (8)	
Ag2	0.667686 (12)	0.06405 (2)	0.717069 (11)	0.03702 (8)	
Ag3	1.009181 (14)	0.07397 (3)	0.816707 (13)	0.04627 (9)	
C1	0.10904 (18)	0.1984 (3)	0.57691 (13)	0.0351 (8)	
C2	0.1425 (2)	0.1533 (4)	0.53604 (14)	0.0463 (9)	
H2	0.1955	0.1370	0.5383	0.056*	
C3	0.0967 (3)	0.1325 (4)	0.49154 (15)	0.0538 (11)	
H3	0.1199	0.1021	0.4642	0.065*	
C4	0.0182 (3)	0.1555 (4)	0.48654 (15)	0.0530 (11)	
C5	-0.0141 (2)	0.1996 (4)	0.52791 (17)	0.0565 (11)	
Н5	-0.0672	0.2149	0.5256	0.068*	
C6	0.0298 (2)	0.2218 (4)	0.57274 (15)	0.0469 (10)	
H6	0.0064	0.2523	0.6000	0.056*	
C7	-0.0295 (3)	0.1341 (5)	0.43795 (17)	0.0801 (16)	
H7A	-0.0827	0.1542	0.4414	0.120*	
H7B	-0.0257	0.0480	0.4285	0.120*	
H7C	-0.0108	0.1863	0.4127	0.120*	
C8	1.03065 (19)	0.2536 (4)	0.96495 (12)	0.0377 (8)	
С9	1.0778 (2)	0.1596 (4)	0.98513 (14)	0.0471 (10)	
Н9	1.0612	0.0769	0.9830	0.057*	
C10	1.1501 (2)	0.1887 (5)	1.00856 (15)	0.0591 (12)	
H10	1.1816	0.1252	1.0227	0.071*	
C11	1.1766 (2)	0.3103 (6)	1.01136 (16)	0.0645 (13)	
C12	1.1281 (3)	0.4044 (5)	0.99292 (17)	0.0628 (12)	
H12	1.1443	0.4871	0.9960	0.075*	

C13	1.0550 (2)	0.3767 (4)	0.96963 (15)	0.0506 (10)
H13	1.0223	0.4407	0.9572	0.061*
C14	1.2587 (3)	0.3412 (8)	1.0342 (2)	0.105 (2)
H14A	1.2669	0.4298	1.0328	0.157*
H14B	1.2957	0.2992	1.0157	0.157*
H14C	1.2651	0.3140	1.0683	0.157*
C15	0.6257 (2)	0.1507 (3)	0.89555 (14)	0.0399 (8)
C16	0.5692 (2)	0.0757 (4)	0.91222 (15)	0.0472 (9)
H16	0.5222	0.0651	0.8928	0.057*
C17	0.5822 (3)	0.0165 (4)	0.95755 (16)	0.0578 (11)
H17	0.5434	-0.0338	0.9685	0.069*
C18	0.6505 (3)	0.0297 (4)	0.98689 (17)	0.0608 (12)
C19	0.7078 (3)	0.1047 (5)	0.96987 (19)	0.0638 (12)
H19	0.7547	0.1148	0.9894	0.077*
C20	0.6959 (2)	0.1644 (4)	0.92434 (16)	0.0514 (10)
H20	0.7349	0.2136	0.9131	0.062*
C21	0.6636 (4)	-0.0304 (6)	1.03776 (19)	0.0922 (18)
H21A	0.7148	-0.0104	1.0526	0.138*
H21B	0.6585	-0.1194	1.0344	0.138*
H21C	0.6259	0.0003	1.0586	0.138*
C22	0.42034 (16)	0.3050 (3)	0.68223 (13)	0.0289 (7)
H22A	0.4236	0.3202	0.7179	0.035*
H22B	0.3727	0.3426	0.6672	0.035*
C23	0.41350 (18)	0.1495 (3)	0.61824 (13)	0.0340 (8)
H23A	0.4117	0.0605	0.6113	0.041*
H23B	0.3661	0.1866	0.6026	0.041*
C24	0.55120 (18)	0.1488 (3)	0.61999 (13)	0.0369 (8)
H24A	0 5952	0 1855	0.6057	0.044*
H24B	0.5510	0.0598	0.6131	0.044*
C25	0.55931 (16)	0.3047 (3)	0.68477 (13)	0.0290 (7)
H25A	0.6039	0 3428	0.6716	0.035*
H25B	0.5637	0.3189	0 7205	0.035*
C26	0 49138 (16)	0 1145 (3)	0.69615 (13)	0.0302 (7)
H26A	0 4958	0 1293	0 7319	0.036*
H26B	0 4907	0.0249	0.6908	0.036*
C27	0.48138(19)	0.3383(3)	0.60693 (13)	0.0386 (8)
H27A	0.4345	0.3764	0 5910	0.046*
H27B	0.5253	0.3755	0 5927	0.046*
C28	0.77641 (16)	0 2991 (3)	0.73890 (13)	0.0299(7)
H28A	0 7571	0.2935	0 7715	0.036*
H28B	0.7382	0.3438	0.7169	0.036*
C29	0.84460 (16)	0.1052 (3)	0.75281 (14)	0.030
H29A	0.8264	0.0977	0.7856	0.038*
H29B	0.8515	0.0216	0.7400	0.038*
C30	0 81468 (19)	0 1839 (3)	0 66969 (14)	0.0384 (8)
H30A	0.8211	0 1012	0.6559	0.046*
H30B	0 7767	0.2283	0.6474	0.046*
C31	0 94465 (18)	0 1821 (3)	0 70622 (15)	0 0424 (9)
H31A	0 9943	0 2245	0 7080	0.051*
	0.2210	0.2210	5.,000	0.001

H31B	0.9515	0.0990	0.6929	0.051*	
C32	0.90727 (17)	0.2980 (3)	0.77631 (14)	0.0347 (8)	
H32A	0.9563	0.3426	0.7797	0.042*	
H32B	0.8892	0.2916	0.8092	0.042*	
C33	0.87806 (19)	0.3752 (3)	0.69322 (14)	0.0385 (8)	
H33A	0.8409	0.4213	0.6709	0.046*	
H33B	0.9270	0.4199	0.6952	0.046*	
C34	1.17915 (16)	0.1141 (3)	0.78134 (13)	0.0294 (7)	
H34A	1.1504	0.1247	0.7488	0.035*	
H34B	1.1854	0.0252	0.7875	0.035*	
C35	1.29800 (17)	0.1580 (3)	0.83154 (13)	0.0333 (8)	
H35A	1.3052	0.0697	0.8388	0.040*	
H35B	1.3489	0.1960	0.8322	0.040*	
C36	1.24515 (17)	0.3086 (3)	0.77130 (12)	0.0267 (7)	
H36A	1.2953	0.3488	0.7711	0.032*	
H36B	1.2170	0.3202	0.7387	0.032*	
C37	1.18014 (18)	0.1554 (3)	0.86903 (13)	0.0340 (8)	
H37A	1.1516	0.1921	0.8946	0.041*	
H37B	1.1871	0.0672	0.8765	0.041*	
C38	1.12622 (16)	0.3044 (3)	0.80919 (13)	0.0297 (7)	
H38A	1.0974	0.3154	0.7767	0.036*	
H38B	1.0966	0.3426	0.8339	0.036*	
C39	1.24502 (18)	0.3481 (3)	0.85897 (13)	0.0334 (8)	
H39A	1.2953	0.3883	0.8597	0.040*	
H39B	1.2170	0.3865	0.8845	0.040*	
O1'	0.1480 (4)	0.3411 (7)	0.6499 (3)	0.0744 (19)*	0.50
01	0.1172 (3)	0.2996 (5)	0.66542 (19)	0.0419 (12)*	0.50
O2'	0.1309 (5)	0.1218 (9)	0.6678 (3)	0.108 (3)*	0.50
O2	0.1813 (3)	0.1080 (5)	0.6571 (2)	0.0513 (14)*	0.50
O1W	0.70784 (18)	-0.0600(3)	0.63965 (14)	0.0704 (10)	
O3'	0.2382 (4)	0.1850 (9)	0.6303 (3)	0.096 (2)*	0.50
03	0.2377 (3)	0.2902 (6)	0.6240 (2)	0.0566 (14)*	0.50
O2W	1.06791 (15)	0.4929 (3)	0.71250 (11)	0.0543 (7)	
O4	0.6619 (2)	0.1634 (3)	0.80569 (12)	0.0881 (12)	
O3W	0.4316 (2)	0.4268 (4)	0.79689 (14)	0.0760 (10)	
05	0.53010 (19)	0.2102 (3)	0.81959 (11)	0.0735 (10)	
O4W	0.6873 (2)	0.4746 (4)	0.62992 (15)	0.0830 (11)	
06	0.63193 (17)	0.3562 (3)	0.84465 (11)	0.0600 (8)	
07'	0.8959 (6)	0.1405 (12)	0.9688 (4)	0.109 (3)*	0.40
07	0.9210 (3)	0.0947 (5)	0.9404 (2)	0.0670 (14)*	0.60
08	0.89252 (18)	0.3193 (4)	0.93192 (15)	0.0903 (12)	
09	0.9709 (3)	0.2271 (5)	0.8767 (2)	0.0475 (13)*	0.50
09'	0.9462 (6)	0.1437 (11)	0.8920 (4)	0.124 (3)*	0.50
SI	0.16466 (5)	0.22358 (10)	0.63466 (4)	0.0441 (2)	
82	0.61121 (6)	0.22628 (9)	0.83691 (4)	0.0481 (2)	
83	0.94276 (6)	0.21884 (11)	0.92946 (5)	0.0599 (3)	
NI	0.41778 (13)	0.1693 (2)	0.67309 (10)	0.0260 (6)	
NZ	0.47982 (16)	0.2043 (3)	0.59677 (11)	0.0382 (7)	
N3	0.48729 (13)	0.3647 (2)	0.66152 (10)	0.0280 (6)	

N4	0.55957 (13)	0.1691 (2)	0.67493 (10)	0.0262 (6)
N5	0.78586 (13)	0.1722 (2)	0.71920 (10)	0.0280 (6)
N6	0.88871 (15)	0.2504 (3)	0.67246 (11)	0.0395 (7)
N7	0.85025 (13)	0.3702 (2)	0.74346 (11)	0.0298 (6)
N8	0.91990 (13)	0.1713 (2)	0.75711 (11)	0.0331 (7)
N9	1.25674 (13)	0.1725 (2)	0.78090 (10)	0.0258 (6)
N10	1.20165 (13)	0.3685 (2)	0.80957 (10)	0.0253 (5)
N11	1.13457 (13)	0.1694 (2)	0.81992 (10)	0.0276 (6)
N12	1.25592 (14)	0.2151 (3)	0.87016 (10)	0.0328 (6)
H1WA	0.6786 (17)	-0.097 (4)	0.6160 (12)	0.049*
H1WB	0.7504 (15)	-0.094 (4)	0.6411 (14)	0.049*
H2WA	1.042 (2)	0.549 (3)	0.6976 (14)	0.049*
H2WB	1.088 (2)	0.448 (3)	0.6915 (13)	0.049*
H3WA	0.425 (2)	0.485 (3)	0.8145 (14)	0.049*
H3WB	0.460 (2)	0.375 (3)	0.8101 (15)	0.049*
H4WA	0.7258 (14)	0.504 (4)	0.6231 (15)	0.049*
H4WB	0.6512 (16)	0.522 (4)	0.6144 (14)	0.049*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag1	0.03300 (13)	0.02596 (14)	0.05419 (18)	-0.00300 (10)	0.01635 (12)	-0.00403 (12)
Ag2	0.02446 (12)	0.02352 (13)	0.06195 (19)	-0.00263 (9)	-0.00151 (11)	0.00299 (13)
Ag3	0.03051 (13)	0.02299 (14)	0.0846 (2)	0.00125 (10)	0.00192 (13)	0.00676 (14)
C1	0.0398 (17)	0.0307 (19)	0.034 (2)	0.0014 (14)	-0.0005 (15)	0.0044 (16)
C2	0.048 (2)	0.045 (2)	0.046 (2)	-0.0009 (18)	0.0078 (18)	-0.0004 (19)
C3	0.082 (3)	0.047 (3)	0.034 (2)	-0.019 (2)	0.012 (2)	-0.0011 (19)
C4	0.074 (3)	0.037 (2)	0.045 (3)	-0.019 (2)	-0.012 (2)	0.0112 (19)
C5	0.041 (2)	0.063 (3)	0.062 (3)	-0.0016 (19)	-0.014 (2)	0.005 (2)
C6	0.0402 (18)	0.053 (3)	0.046 (2)	0.0076 (17)	-0.0029 (17)	-0.001 (2)
C7	0.113 (4)	0.068 (4)	0.052 (3)	-0.034 (3)	-0.027 (3)	0.017 (3)
C8	0.0446 (18)	0.041 (2)	0.0289 (19)	0.0084 (16)	0.0097 (15)	0.0040 (17)
C9	0.050 (2)	0.051 (3)	0.041 (2)	0.0123 (18)	0.0073 (18)	0.0049 (19)
C10	0.054 (2)	0.082 (4)	0.042 (2)	0.026 (2)	0.0055 (19)	0.010 (2)
C11	0.053 (2)	0.101 (4)	0.040 (3)	0.002 (3)	0.006 (2)	0.001 (3)
C12	0.069 (3)	0.063 (3)	0.057 (3)	-0.020 (2)	0.012 (2)	0.000 (2)
C13	0.057 (2)	0.045 (2)	0.050(2)	0.0084 (19)	0.0067 (19)	0.009 (2)
C14	0.070 (3)	0.159 (7)	0.083 (4)	-0.020 (4)	-0.004 (3)	-0.016 (4)
C15	0.052 (2)	0.0293 (19)	0.040 (2)	0.0067 (16)	0.0141 (17)	-0.0023 (17)
C16	0.060 (2)	0.041 (2)	0.041 (2)	-0.0041 (18)	0.0108 (18)	0.0017 (19)
C17	0.084 (3)	0.045 (3)	0.047 (3)	0.002 (2)	0.018 (2)	0.011 (2)
C18	0.089 (3)	0.046 (3)	0.048 (3)	0.026 (2)	0.013 (2)	0.008 (2)
C19	0.068 (3)	0.055 (3)	0.066 (3)	0.022 (2)	-0.008 (2)	0.000 (2)
C20	0.051 (2)	0.046 (2)	0.059 (3)	0.0081 (18)	0.013 (2)	0.002 (2)
C21	0.141 (5)	0.075 (4)	0.058 (3)	0.022 (4)	0.001 (3)	0.029 (3)
C22	0.0247 (14)	0.0204 (16)	0.043 (2)	0.0010 (12)	0.0083 (14)	-0.0054 (14)
C23	0.0317 (16)	0.0312 (19)	0.038 (2)	-0.0032 (14)	-0.0018 (15)	-0.0071 (16)
C24	0.0321 (16)	0.036 (2)	0.045 (2)	0.0018 (14)	0.0124 (15)	-0.0059 (17)

C25	0.0249 (14)	0.0228 (16)	0.0388 (19)	-0.0020 (12)	0.0007 (13)	0.0013 (15)
C26	0.0277 (15)	0.0214 (16)	0.042 (2)	-0.0001 (12)	0.0031 (14)	0.0052 (15)
C27	0.0376 (17)	0.036 (2)	0.041 (2)	-0.0004 (15)	0.0019 (16)	0.0133 (17)
C28	0.0247 (14)	0.0209 (16)	0.045 (2)	-0.0018 (12)	0.0051 (14)	-0.0032 (15)
C29	0.0284 (15)	0.0175 (15)	0.049 (2)	-0.0039 (12)	0.0036 (14)	0.0021 (15)
C30	0.0391 (17)	0.0300 (19)	0.047 (2)	-0.0062 (14)	0.0077 (16)	-0.0074 (17)
C31	0.0277 (16)	0.0317 (19)	0.070 (3)	0.0022 (14)	0.0169 (17)	-0.0070 (19)
C32	0.0290 (15)	0.0192 (16)	0.054 (2)	-0.0006 (12)	-0.0035 (15)	-0.0016 (16)
C33	0.0324 (16)	0.0243 (17)	0.060 (2)	-0.0059 (14)	0.0101 (16)	0.0052 (17)
C34	0.0310 (15)	0.0217 (16)	0.0355 (19)	-0.0044 (12)	0.0032 (14)	-0.0023 (14)
C35	0.0260 (15)	0.0293 (18)	0.044 (2)	0.0036 (13)	-0.0010 (14)	0.0061 (16)
C36	0.0279 (14)	0.0200 (16)	0.0319 (18)	-0.0024 (12)	0.0017 (13)	0.0038 (14)
C37	0.0413 (18)	0.0284 (18)	0.0333 (19)	-0.0011 (14)	0.0083 (15)	0.0053 (15)
C38	0.0249 (14)	0.0253 (17)	0.0388 (19)	0.0015 (12)	0.0022 (13)	0.0016 (15)
C39	0.0340 (16)	0.0301 (18)	0.036 (2)	-0.0040 (14)	0.0019 (14)	-0.0043 (16)
O1W	0.0576 (18)	0.065 (2)	0.087 (3)	0.0022 (16)	0.0022 (17)	-0.0355 (19)
O2W	0.0479 (16)	0.061 (2)	0.0547 (19)	0.0042 (14)	0.0067 (13)	-0.0006 (16)
O4	0.155 (3)	0.054 (2)	0.067 (2)	-0.031 (2)	0.069 (2)	-0.0153 (17)
O3W	0.072 (2)	0.080 (3)	0.072 (3)	-0.0049 (19)	-0.0161 (19)	-0.003 (2)
O5	0.088 (2)	0.079 (2)	0.0488 (18)	-0.0349 (19)	-0.0164 (16)	0.0206 (17)
O4W	0.064 (2)	0.089 (3)	0.098 (3)	-0.003 (2)	0.018 (2)	0.047 (2)
O6	0.088 (2)	0.0288 (15)	0.0622 (19)	-0.0083 (14)	0.0010 (15)	0.0022 (14)
08	0.0663 (19)	0.076 (3)	0.123 (3)	0.0312 (18)	-0.021 (2)	-0.020 (2)
S1	0.0402 (5)	0.0503 (6)	0.0398 (5)	0.0153 (4)	-0.0062 (4)	-0.0039 (5)
S2	0.0757 (6)	0.0340 (5)	0.0365 (5)	-0.0147 (5)	0.0151 (5)	-0.0004 (4)
S3	0.0599 (6)	0.0515 (7)	0.0640 (7)	0.0196 (5)	-0.0161 (5)	-0.0143 (6)
N1	0.0223 (11)	0.0190 (13)	0.0370 (16)	-0.0010 (10)	0.0041 (11)	-0.0018 (12)
N2	0.0402 (15)	0.0409 (18)	0.0337 (16)	0.0007 (13)	0.0051 (13)	-0.0021 (14)
N3	0.0253 (12)	0.0176 (13)	0.0416 (17)	-0.0008 (10)	0.0059 (11)	0.0019 (12)
N4	0.0200 (11)	0.0194 (13)	0.0393 (16)	-0.0001 (10)	0.0037 (11)	0.0003 (12)
N5	0.0218 (11)	0.0210 (13)	0.0412 (17)	-0.0042 (10)	0.0027 (11)	-0.0024 (12)
N6	0.0364 (14)	0.0339 (17)	0.0500 (19)	-0.0061 (13)	0.0140 (13)	-0.0014 (15)
N7	0.0211 (12)	0.0187 (13)	0.0487 (18)	-0.0009 (10)	-0.0002 (12)	-0.0014 (13)
N8	0.0220 (12)	0.0204 (14)	0.057 (2)	0.0025 (10)	0.0030 (12)	-0.0024 (13)
N9	0.0237 (12)	0.0189 (13)	0.0351 (16)	0.0001 (10)	0.0049 (11)	0.0012 (12)
N10	0.0238 (11)	0.0223 (13)	0.0295 (15)	-0.0006 (10)	0.0011 (11)	-0.0004 (12)
N11	0.0242 (12)	0.0230 (14)	0.0358 (16)	-0.0018 (10)	0.0036 (11)	0.0014 (12)
N12	0.0312 (13)	0.0338 (16)	0.0325 (16)	0.0013 (12)	-0.0016 (12)	0.0067 (13)
Geometric par	rameters (Å, °)					
Ag1—N1		2.362 (2)	C28–	-N7	1.48	3 (4)
Ag1—N9 ⁱ		2.367 (3)	C28–	-H28A	0.97	00
Ag1—N10 ⁱⁱ		2.388 (3)	C28–	–H28B	0.97	00
Ag2—N5		2.347 (2)	C29–	-N8	1.47	8 (4)
Ag2—N7 ⁱⁱ		2.365 (3)	C29–	-N5	1.47	8 (4)
Ag2—N4		2.374 (2)	C29–	-H29A	0.97	00

С29—Н29В

2.315 (3)

Ag3—N3ⁱⁱ

0.9700

Ag3—N8	2.358 (3)	C30—N6	1.462 (4)
Ag3—N11	2.394 (2)	C30—N5	1.474 (4)
Ag3—09	2.438 (5)	C30—H30A	0.9700
Ag3—O9'	2.507 (11)	С30—Н30В	0.9700
C1—C2	1.380 (5)	C31—N6	1.458 (5)
C1—C6	1.389 (5)	C31—N8	1.479 (5)
C1—S1	1.767 (3)	C31—H31A	0.9700
C2—C3	1.388 (6)	C31—H31B	0.9700
С2—Н2	0.9300	C32—N8	1.475 (4)
C3—C4	1.375 (6)	C32—N7	1.477 (4)
С3—Н3	0.9300	С32—Н32А	0.9700
C4—C5	1.378 (6)	С32—Н32В	0.9700
C4—C7	1.494 (6)	C33—N6	1.467 (4)
C5—C6	1.381 (6)	C33—N7	1.480 (4)
С5—Н5	0.9300	С33—Н33А	0.9700
С6—Н6	0.9300	С33—Н33В	0.9700
С7—Н7А	0.9600	C34—N11	1.477 (4)
С7—Н7В	0.9600	C34—N9	1.483 (4)
С7—Н7С	0.9600	C34—H34A	0.9700
C8—C9	1.374 (5)	C34—H34B	0.9700
C8—C13	1.385 (5)	C35—N12	1.461 (4)
C8—S3	1.755 (4)	C35—N9	1.483 (4)
C9—C10	1.381 (6)	С35—Н35А	0.9700
С9—Н9	0.9300	С35—Н35В	0.9700
C10-C11	1.379 (7)	C36—N10	1.481 (4)
C10—H10	0.9300	C36—N9	1.489 (4)
C11—C12	1.372 (7)	С36—Н36А	0.9700
C11—C14	1.529 (6)	С36—Н36В	0.9700
C12—C13	1.388 (6)	C37—N12	1.458 (4)
C12—H12	0.9300	C37—N11	1.479 (4)
С13—Н13	0.9300	С37—Н37А	0.9700
C14—H14A	0.9600	С37—Н37В	0.9700
C14—H14B	0.9600	C38—N10	1.475 (4)
C14—H14C	0.9600	C38—N11	1.477 (4)
C15—C16	1.374 (5)	C38—H38A	0.9700
C15—C20	1.384 (5)	С38—Н38В	0.9700
C15—S2	1.769 (4)	C39—N12	1.463 (4)
C16—C17	1.373 (6)	C39—N10	1.477 (4)
С16—Н16	0.9300	С39—Н39А	0.9700
C17—C18	1.364 (6)	С39—Н39В	0.9700
С17—Н17	0.9300	01'01	0.837 (7)
C18—C19	1.388 (7)	01'—S1	1.363 (7)
C18—C21	1.509 (6)	01—S1	1.469 (5)
C19—C20	1.3/9 (6)	02-02	0.956 (9)
C19—H19	0.9300	02-51	1.558 (10)
C20—H20	0.9300	02-51	1.394 (6)
C21—H2IA	0.9600	02-03'	1.520 (10)
C21—H21B	0.9600		0.87 (2)
C21—H21C	0.9600	OIW—HIWB	0.82 (2)

C22—N1	1.473 (4)	03'03	1.139 (9)
C22—N3	1.480 (4)	O3'—S1	1.354 (8)
C22—H22A	0.9700	O3—S1	1.504 (6)
C22—H22B	0.9700	O2W—H2WA	0.83 (2)
C23—N2	1.459 (4)	O2W—H2WB	0.84 (2)
C23—N1	1.486 (4)	O4—S2	1.441 (3)
С23—Н23А	0.9700	O3W—H3WA	0.80 (2)
С23—Н23В	0.9700	O3W—H3WB	0.80 (2)
C24—N2	1.456 (4)	O5—S2	1.446 (3)
C24—N4	1.487 (4)	O4W—H4WA	0.78 (2)
C24—H24A	0.9700	O4W—H4WB	0.88 (2)
C24—H24B	0.9700	O6—S2	1.446 (3)
C25—N4	1.476 (4)	O7'—O7	1.036 (11)
C25—N3	1.485 (4)	O7'—S3	1.628 (12)
C25—H25A	0.9700	O7—S3	1.420 (6)
С25—Н25В	0.9700	07—09'	1.509 (12)
C26—N4	1.481 (4)	O8—S3	1.389 (3)
C26—N1	1.482 (4)	09—09'	1.089 (11)
C26—H26A	0.9700	O9—S3	1.549 (5)
C26—H26B	0.9700	O9'—S3	1.296 (11)
C27—N2	1.460 (5)	N3—Ag3 ⁱⁱⁱ	2.315 (3)
C27—N3	1.489 (4)	N7—Ag2 ⁱⁱⁱ	2.365 (3)
C27—H27A	0.9700	N9—Ag1 ^{iv}	2.367 (2)
С27—Н27В	0.9700	N10—Ag1 ⁱⁱⁱ	2.388 (3)
C28—N5	1.474 (4)		
N1—Ag1—N9 ⁱ	126.27 (9)	N9—C34—H34B	109.2
N1—Ag1—N10 ⁱⁱ	109.49 (8)	H34A—C34—H34B	107.9
N9 ⁱ —Ag1—N10 ⁱⁱ	122.48 (8)	N12—C35—N9	112.4 (2)
N5—Ag2—N7 ⁱⁱ	125.05 (9)	N12—C35—H35A	109.1
N5—Ag2—N4	115.03 (9)	N9—C35—H35A	109.1
N7 ⁱⁱ —Ag2—N4	119.83 (8)	N12—C35—H35B	109.1
N3 ⁱⁱ —Ag3—N8	126.79 (9)	N9—C35—H35B	109.1
N3 ⁱⁱ —Ag3—N11	113.74 (8)	H35A—C35—H35B	107.9
N8—Ag3—N11	111.58 (9)	N10—C36—N9	111.9 (2)
N3 ⁱⁱ —Ag3—O9	119.04 (15)	N10-C36-H36A	109.2
N8—Ag3—O9	87.16 (14)	N9—C36—H36A	109.2
N11—Ag3—O9	89.64 (14)	N10-C36-H36B	109.2
N3 ⁱⁱ —Ag3—O9'	94.9 (3)	N9—C36—H36B	109.2
N8—Ag3—O9'	96.3 (2)	H36A—C36—H36B	107.9
N11—Ag3—O9'	108.0 (3)	N12—C37—N11	112.0 (3)
O9—Ag3—O9'	25.4 (3)	N12—C37—H37A	109.2
C2—C1—C6	119.2 (3)	N11—C37—H37A	109.2
C2C1S1	121.3 (3)	N12—C37—H37B	109.2
C6—C1—S1	119.5 (3)	N11—C37—H37B	109.2
C1—C2—C3	119.6 (4)	Н37А—С37—Н37В	107.9
С1—С2—Н2	120.2	N10-C38-N11	112.6 (2)

С3—С2—Н2	120.2	N10-C38-H38A	109.1
C4—C3—C2	122.1 (4)	N11—C38—H38A	109.1
С4—С3—Н3	119.0	N10-C38-H38B	109.1
С2—С3—Н3	119.0	N11—C38—H38B	109.1
C3—C4—C5	117.3 (4)	H38A—C38—H38B	107.8
C3—C4—C7	121.0 (4)	N12-C39-N10	111.9 (3)
C5—C4—C7	121.7 (4)	N12—C39—H39A	109.2
C4—C5—C6	122.2 (4)	N10—C39—H39A	109.2
С4—С5—Н5	118.9	N12—C39—H39B	109.2
С6—С5—Н5	118.9	N10-C39-H39B	109.2
C5—C6—C1	119.5 (4)	Н39А—С39—Н39В	107.9
С5—С6—Н6	120.2	O1—O1'—S1	79.9 (7)
С1—С6—Н6	120.2	01'—01—S1	66.0 (6)
С4—С7—Н7А	109.5	O2—O2'—S1	62.0 (7)
С4—С7—Н7В	109.5	O2'—O2—S1	80.7 (7)
H7A—C7—H7B	109.5	02'02	135.4 (9)
С4—С7—Н7С	109.5	S1—O2—O3'	55.2 (4)
H7A—C7—H7C	109.5	H1WA—O1W—H1WB	107 (3)
H7B—C7—H7C	109.5	O3—O3'—S1	73.6 (6)
C9—C8—C13	119.8 (4)	03—03'—02	127.6 (7)
C9—C8—S3	120.6 (3)	S1—O3'—O2	57.7 (4)
C13—C8—S3	119.4 (3)	O3'—O3—S1	59.8 (5)
C8—C9—C10	119.4 (4)	H2WA—O2W—H2WB	109 (3)
С8—С9—Н9	120.3	H3WA—O3W—H3WB	113 (4)
С10—С9—Н9	120.3	H4WA—O4W—H4WB	104 (3)
С11—С10—С9	121.3 (4)	O7—O7'—S3	59.6 (7)
C11-C10-H10	119.4	O7'—O7—S3	81.4 (8)
С9—С10—Н10	119.4	07'0709'	130.5 (10)
C12-C11-C10	119.0 (4)	S3—O7—O9'	52.4 (5)
C12—C11—C14	119.9 (6)	O9'—O9—S3	55.6 (6)
C10—C11—C14	121.1 (5)	09'—09—Ag3	80.9 (7)
C11—C12—C13	120.3 (5)	S3—O9—Ag3	134.4 (3)
C11—C12—H12	119.9	O9—O9'—S3	80.5 (8)
C13—C12—H12	119.9	09—09'—07	140.3 (10)
C8—C13—C12	120.0 (4)	S3—O9'—O7	60.2 (5)
C8—C13—H13	120.0	O9—O9'—Ag3	73.7 (6)
C12—C13—H13	120.0	S3—O9'—Ag3	150.6 (7)
C11—C14—H14A	109.5	O7—O9'—Ag3	141.3 (7)
C11—C14—H14B	109.5	O3'—S1—O1'	122.4 (5)
H14A—C14—H14B	109.5	O3'—S1—O2	67.1 (4)
C11—C14—H14C	109.5	O1'—S1—O2	136.8 (4)
H14A—C14—H14C	109.5	O3'—S1—O1	143.2 (4)
H14B—C14—H14C	109.5	01'—S1—O1	34.1 (3)
C16—C15—C20	119.6 (4)	O2—S1—O1	110.5 (3)
C16—C15—S2	121.0 (3)	O3'—S1—O3	46.6 (4)
C20—C15—S2	119.4 (3)	O1'—S1—O3	80.0 (4)
C17—C16—C15	120.0 (4)	O2—S1—O3	111.2 (3)
С17—С16—Н16	120.0	O1—S1—O3	111.8 (3)
C15-C16-H16	120.0	O3'—S1—O2'	104.2 (5)

C18—C17—C16	121.5 (4)	O1'—S1—O2'	111.7 (5)
С18—С17—Н17	119.2	O2—S1—O2'	37.3 (3)
С16—С17—Н17	119.2	01—\$1—02'	78.6 (4)
C17—C18—C19	118.4 (4)	03-\$1-02'	144.1 (4)
C17—C18—C21	121.7 (5)	03'—S1—C1	108.2 (4)
C19-C18-C21	1198(5)	01'-81-C1	107.0(3)
C20-C19-C18	120.9 (4)	02-81-C1	108.5 (3)
C20-C19-H19	119.6	01 - 81 - C1	107.1(2)
C18—C19—H19	119.6	03 = 81 = C1	107.5(2)
C19 - C20 - C15	119.6 (4)	02' - 81 - C1	101.2(4)
C19—C20—H20	120.2	04-82-05	1127(2)
$C_{15} = C_{20} = H_{20}$	120.2	04-82-06	112.0(18)
$C_{18} - C_{21} - H_{21A}$	109.5	05-82-06	112.3 (2)
C_{18} C_{21} H_{21R}	109.5	04 - 82 - C15	1054(2)
$H_{21A} - C_{21} - H_{21B}$	109.5	05-82-015	105.1(2) 106.32(17)
C_{18} C_{21} H_{21C}	109.5	06-82-015	100.52(17) 107.46(17)
$H_{21A} = C_{21} = H_{21C}$	109.5	00' 52' 015'	107.40(17)
$H_{21R} = C_{21} = H_{21C}$	109.5	$0^{9} = 5^{3} = 0^{8}$	120.3(3)
N1 C22 N2	109.5	$0^{9} = 3^{5} = 0^{7}$	07.3(0)
N1 = C22 = N3	112.0 (2)	0° 3° 0°	122.3(3)
N2 C22 H22A	109.2	$0^{9} = 3^{5} = 0^{9}$	43.9(3)
N3-C22-H22A	109.2	08-53-09	104.8(3)
N1—C22—H22B	109.2	07-53-09	111.0(3)
N3—C22—H22B	109.2	09 = 53 = 07	104.5(7)
H22A-C22-H22B	107.9	08-53-07	90.8 (5)
N2—C23—N1	111.8 (3)	0/	39.0 (4)
N2—C23—H23A	109.2	09-83-07	147.9 (5)
N1—C23—H23A	109.2	09'	116.8 (4)
N2—C23—H23B	109.2	08-83-08	108.9 (2)
NI—C23—H23B	109.2	07—\$3—C8	108.6 (3)
H23A—C23—H23B	107.9	09—\$3—C8	98.7 (2)
N2—C24—N4	111.3 (2)	O7'—S3—C8	102.5 (4)
N2—C24—H24A	109.4	C22—N1—C26	108.0 (2)
N4—C24—H24A	109.4	C22—N1—C23	107.7 (3)
N2—C24—H24B	109.4	C26—N1—C23	108.4 (2)
N4—C24—H24B	109.4	C22—N1—Ag1	108.63 (17)
H24A—C24—H24B	108.0	C26—N1—Ag1	108.22 (18)
N4—C25—N3	111.5 (2)	C23—N1—Ag1	115.60 (18)
N4—C25—H25A	109.3	C24—N2—C23	109.5 (3)
N3—C25—H25A	109.3	C24—N2—C27	108.7 (3)
N4—C25—H25B	109.3	C23—N2—C27	108.8 (3)
N3—C25—H25B	109.3	C22—N3—C25	108.1 (2)
H25A—C25—H25B	108.0	C22—N3—C27	108.0 (2)
N4—C26—N1	111.6 (2)	C25—N3—C27	107.9 (2)
N4—C26—H26A	109.3	C22—N3—Ag3 ⁱⁱⁱ	108.95 (17)
N1—C26—H26A	109.3	C25—N3—Ag3 ⁱⁱⁱ	108.15 (18)
N4—C26—H26B	109.3	C27—N3—Ag3 ⁱⁱⁱ	115.50 (19)
N1—C26—H26B	109.3	C25—N4—C26	107.6 (2)
H26A—C26—H26B	108.0	C25—N4—C24	108.7 (3)

N2 C27 N3	111 7 (3)	C26 NA C24	108.8(2)
$N_2 = C_2 7 = N_3$ $N_2 = C_2 7 = H_2 7 A$	109.3	$C_{20} = N_{4} = C_{24}$	108.8(2) 113 34(17)
N3-C27-H27A	109.3	C_26 N4 Ag2	10451(18)
N2-C27-H27B	109.3	C_24 —N4—A σ^2	113 63 (18)
N3-C27-H27B	109.3	$C_{30} - N_{5} - C_{28}$	107.9 (2)
H27A-C27-H27B	107.9	$C_{30} - N_{5} - C_{29}$	108.7(2)
N5-C28-N7	112.2 (2)	C28—N5—C29	108.7(2)
N5—C28—H28A	109.2	C30—N5—Ag2	113.08 (18)
N7—C28—H28A	109.2	C28—N5—Ag2	109.63 (16)
N5—C28—H28B	109.2	C29—N5—Ag2	108.77 (18)
N7—C28—H28B	109.2	C31—N6—C30	108.2 (3)
H28A—C28—H28B	107.9	C31—N6—C33	108.7 (3)
N8—C29—N5	111.4 (2)	C30—N6—C33	108.7 (2)
N8—C29—H29A	109.4	C32—N7—C33	107.9 (2)
N5—C29—H29A	109.4	C32—N7—C28	107.5 (2)
N8—C29—H29B	109.4	C33—N7—C28	107.4 (3)
N5—C29—H29B	109.4	C32—N7—Ag2 ⁱⁱⁱ	107.44 (19)
H29A—C29—H29B	108.0	$C_{32} = N_7 = A_{g2}^{iii}$	116 58 (19)
N6-C30-N5	111.6 (3)	$C_{28} N_{7} \Delta g_{2}^{iii}$	109 70 (17)
N6-C30-H30A	109.3	$C_{20} - N_{10} - A_{22}$ $C_{32} - N_{8} - C_{29}$	107.9 (2)
N5-C30-H30A	109.3	C_{32} —N8—C31	108.6 (3)
N6-C30-H30B	109.3	C29—N8—C31	107.4 (3)
N5-C30-H30B	109.3	C32—N8—Ag3	106 1 (2)
H30A—C30—H30B	108.0	C_29 N8 Ag3	110.9(2)
N6-C31-N8	112.4 (2)	C31—N8—Ag3	115.70 (18)
N6-C31-H31A	109.1	C34—N9—C35	107.7 (2)
N8—C31—H31A	109.1	C34—N9—C36	107.9 (2)
N6—C31—H31B	109.1	C35—N9—C36	107.8 (2)
N8—C31—H31B	109.1	C34—N9—Ag1 ^{iv}	106.83 (18)
H31A—C31—H31B	107.9	$C35 - N9 - Ag1^{iv}$	117.58 (17)
N8—C32—N7	112.6 (3)	C_{36} N9 Ag1 ^{iv}	108.72 (18)
N8—C32—H32A	109.1	C38—N10—C39	108.0 (2)
N7—C32—H32A	109.1	C38—N10—C36	107.7 (2)
N8—C32—H32B	109.1	C39—N10—C36	108.3 (2)
N7—C32—H32B	109.1	C38—N10—Ag1 ⁱⁱⁱ	111.35 (17)
H32A—C32—H32B	107.8	C39—N10—Ag1 ⁱⁱⁱ	114.17 (19)
N6—C33—N7	112.3 (3)	C36—N10—Ag1 ⁱⁱⁱ	107.13 (18)
N6—C33—H33A	109.1	C34—N11—C38	107.6 (2)
N7—C33—H33A	109.1	C34—N11—C37	108.5 (2)
N6—C33—H33B	109.1	C38—N11—C37	107.9 (2)
N7—C33—H33B	109.1	C34—N11—Ag3	109.81 (18)
H33A—C33—H33B	107.9	C38—N11—Ag3	109.83 (16)
N11—C34—N9	111.9 (2)	C37—N11—Ag3	113.03 (18)
N11—C34—H34A	109.2	C37—N12—C35	108.2 (3)
N9—C34—H34A	109.2	C37—N12—C39	109.0 (2)
N11—C34—H34B	109.2	C35—N12—C39	108.9 (3)
C6—C1—C2—C3	0.2 (6)	07—07'—S3—09	26.1 (12)

S1—C1—C2—C3	178.8 (3)	O7—O7'—S3—C8	-104.2 (6)
C1—C2—C3—C4	0.0 (6)	C9—C8—S3—O9'	-54.3 (7)
C2—C3—C4—C5	-0.5 (6)	C13—C8—S3—O9'	121.2 (6)
C2—C3—C4—C7	179.1 (4)	C9—C8—S3—O8	154.4 (3)
C3—C4—C5—C6	0.8 (7)	C13—C8—S3—O8	-30.1 (4)
C7—C4—C5—C6	-178.8 (4)	C9—C8—S3—O7	19.1 (4)
C4—C5—C6—C1	-0.5 (7)	C13—C8—S3—O7	-165.4 (4)
C2-C1-C6-C5	0.0 (6)	C9—C8—S3—O9	-96.6 (4)
S1—C1—C6—C5	-178.6 (3)	C13—C8—S3—O9	78.9 (4)
C13—C8—C9—C10	-2.0 (5)	C9—C8—S3—O7'	59.2 (5)
S3—C8—C9—C10	173.5 (3)	C13—C8—S3—O7'	-125.3 (5)
C8—C9—C10—C11	-1.2 (6)	N3—C22—N1—C26	58.5 (3)
C9-C10-C11-C12	3.7 (6)	N3—C22—N1—C23	-58.4 (3)
C9—C10—C11—C14	-175.8 (4)	N3—C22—N1—Ag1	175.7 (2)
C10-C11-C12-C13	-3.1 (7)	N4—C26—N1—C22	-59.4 (3)
C14—C11—C12—C13	176.4 (4)	N4—C26—N1—C23	57.0 (3)
C9—C8—C13—C12	2.5 (6)	N4—C26—N1—Ag1	-176.8 (2)
S3—C8—C13—C12	-173.0 (3)	N2—C23—N1—C22	59.0 (3)
C11—C12—C13—C8	0.0 (6)	N2—C23—N1—C26	-57.7 (3)
C20—C15—C16—C17	1.0 (6)	N2—C23—N1—Ag1	-179.3 (2)
S2—C15—C16—C17	179.0 (3)	N9 ⁱ —Ag1—N1—C22	-22.2 (2)
C15—C16—C17—C18	-0.2 (6)	N10 ⁱⁱ —Ag1—N1—C22	172.70 (19)
C16—C17—C18—C19	-0.3 (7)	N9 ⁱ —Ag1—N1—C26	94.8 (2)
C16—C17—C18—C21	177.1 (4)	N10 ⁱⁱ —Ag1—N1—C26	-70.3 (2)
C17—C18—C19—C20	-0.1 (7)	N9 ⁱ —Ag1—N1—C23	-143.4 (2)
C21-C18-C19-C20	-177.5 (4)	N10 ⁱⁱ —Ag1—N1—C23	51.5 (2)
C18—C19—C20—C15	0.8 (6)	N4—C24—N2—C23	-59.0 (4)
C18—C19—C20—C15 C16—C15—C20—C19	0.8 (6) -1.3 (6)	N4—C24—N2—C23 N4—C24—N2—C27	-59.0 (4) 59.8 (3)
C18—C19—C20—C15 C16—C15—C20—C19 S2—C15—C20—C19	0.8 (6) -1.3 (6) -179.4 (3)	N4—C24—N2—C23 N4—C24—N2—C27 N1—C23—N2—C24	-59.0 (4) 59.8 (3) 59.1 (4)
C18—C19—C20—C15 C16—C15—C20—C19 S2—C15—C20—C19 S1—O2'—O2—O3'	0.8 (6) -1.3 (6) -179.4 (3) 7.9 (10)	N4—C24—N2—C23 N4—C24—N2—C27 N1—C23—N2—C24 N1—C23—N2—C27	-59.0 (4) 59.8 (3) 59.1 (4) -59.7 (3)
C18—C19—C20—C15 C16—C15—C20—C19 S2—C15—C20—C19 S1—O2'—O2—O3' O2'—O2—O3'—O3	0.8 (6) -1.3 (6) -179.4 (3) 7.9 (10) 15.1 (17)	N4—C24—N2—C23 N4—C24—N2—C27 N1—C23—N2—C24 N1—C23—N2—C27 N3—C27—N2—C24	-59.0 (4) 59.8 (3) 59.1 (4) -59.7 (3) -60.2 (3)
C18—C19—C20—C15 C16—C15—C20—C19 S2—C15—C20—C19 S1—O2'—O2—O3' O2'—O2—O3'—O3 S1—O2—O3'—O3	0.8 (6) -1.3 (6) -179.4 (3) 7.9 (10) 15.1 (17) 24.6 (8)	N4—C24—N2—C23 N4—C24—N2—C27 N1—C23—N2—C24 N1—C23—N2—C27 N3—C27—N2—C24 N3—C27—N2—C23	-59.0 (4) 59.8 (3) 59.1 (4) -59.7 (3) -60.2 (3) 59.0 (3)
C18—C19—C20—C15 C16—C15—C20—C19 S2—C15—C20—C19 S1—O2'—O2—O3' O2'—O2—O3'—O3 S1—O2—O3'—O3 O2'—O2—O3'—S1	0.8 (6) -1.3 (6) -179.4 (3) 7.9 (10) 15.1 (17) 24.6 (8) -9.5 (12)	N4—C24—N2—C23 N4—C24—N2—C27 N1—C23—N2—C24 N1—C23—N2—C27 N3—C27—N2—C24 N3—C27—N2—C23 N1—C22—N3—C25	-59.0 (4) 59.8 (3) 59.1 (4) -59.7 (3) -60.2 (3) 59.0 (3) -58.4 (3)
C18-C19-C20-C15 $C16-C15-C20-C19$ $S2-C15-C20-C19$ $S1-O2'-O2-O3'$ $O2'-O2-O3'-O3$ $S1-O2-O3'-O3$ $O2'-O2-O3'-S1$ $O2-O3'-O3-S1$	0.8 (6) -1.3 (6) -179.4 (3) 7.9 (10) 15.1 (17) 24.6 (8) -9.5 (12) -21.5 (6)	N4—C24—N2—C23 N4—C24—N2—C27 N1—C23—N2—C24 N1—C23—N2—C27 N3—C27—N2—C24 N3—C27—N2—C24 N3—C27—N2—C23 N1—C22—N3—C25 N1—C22—N3—C27	-59.0 (4) 59.8 (3) 59.1 (4) -59.7 (3) -60.2 (3) 59.0 (3) -58.4 (3) 58.1 (3)
C18—C19—C20—C15 C16—C15—C20—C19 S2—C15—C20—C19 S1—O2'—O2—O3' O2'—O2—O3'—O3 S1—O2—O3'—O3 O2'—O2—O3'—S1 O2—O3'—O3—S1 S3—O7'—O7—O9'	0.8 (6) -1.3 (6) -179.4 (3) 7.9 (10) 15.1 (17) 24.6 (8) -9.5 (12) -21.5 (6) -19.8 (9)	N4—C24—N2—C23 N4—C24—N2—C27 N1—C23—N2—C24 N1—C23—N2—C27 N3—C27—N2—C24 N3—C27—N2—C23 N1—C22—N3—C25 N1—C22—N3—C27 N1—C22—N3—Ag3 ⁱⁱⁱ	-59.0 (4) 59.8 (3) 59.1 (4) -59.7 (3) -60.2 (3) 59.0 (3) -58.4 (3) 58.1 (3) -175.7 (2)
C18—C19—C20—C15 C16—C15—C20—C19 S2—C15—C20—C19 S1—O2'—O2—O3' O2'—O2—O3'—O3 S1—O2—O3'—O3 O2'—O2—O3'—S1 O2—O3'—O3—S1 S3—O7'—O7—O9' $N3^{ii}$ —Ag3—O9—O9'	0.8 (6) -1.3 (6) -179.4 (3) 7.9 (10) 15.1 (17) 24.6 (8) -9.5 (12) -21.5 (6) -19.8 (9) -20.0 (6)	N4—C24—N2—C23 N4—C24—N2—C27 N1—C23—N2—C24 N1—C23—N2—C27 N3—C27—N2—C24 N3—C27—N2—C23 N1—C22—N3—C25 N1—C22—N3—C25 N1—C22—N3—C27 N1—C22—N3—Ag3 ⁱⁱⁱ N4—C25—N3—C22	-59.0 (4) 59.8 (3) 59.1 (4) -59.7 (3) -60.2 (3) 59.0 (3) -58.4 (3) 58.1 (3) -175.7 (2) 59.0 (3)
C18—C19—C20—C15 C16—C15—C20—C19 S2—C15—C20—C19 S1—O2'—O2—O3' O2'—O2—O3'—O3 S1—O2—O3'—O3 O2'—O2—O3'—S1 O2—O3'—O3—S1 S3—O7'—O7—O9' N 3^{ii} —Ag3—O9—O9' N8—Ag3—O9—O9'	0.8 (6) -1.3 (6) -179.4 (3) 7.9 (10) 15.1 (17) 24.6 (8) -9.5 (12) -21.5 (6) -19.8 (9) -20.0 (6) 111.2 (6)	N4—C24—N2—C23 N4—C24—N2—C27 N1—C23—N2—C24 N1—C23—N2—C27 N3—C27—N2—C24 N3—C27—N2—C23 N1—C22—N3—C25 N1—C22—N3—C27 N1—C22—N3—Ag3 ⁱⁱⁱ N4—C25—N3—C22 N4—C25—N3—C27	-59.0 (4) 59.8 (3) 59.1 (4) -59.7 (3) -60.2 (3) 59.0 (3) -58.4 (3) 58.1 (3) -175.7 (2) 59.0 (3) -57.6 (3)
C18—C19—C20—C15 C16—C15—C20—C19 S2—C15—C20—C19 S1—O2'—O2—O3' O2'—O2—O3'—O3 S1—O2—O3'—O3 O2'—O2—O3'—S1 O2—O3'—O3—S1 S3—O7'—O7—O9' N 3ii —Ag3—O9—O9' N11—Ag3—O9—O9'	$\begin{array}{l} 0.8 \ (6) \\ -1.3 \ (6) \\ -179.4 \ (3) \\ 7.9 \ (10) \\ 15.1 \ (17) \\ 24.6 \ (8) \\ -9.5 \ (12) \\ -21.5 \ (6) \\ -19.8 \ (9) \\ -20.0 \ (6) \\ 111.2 \ (6) \\ -137.2 \ (6) \end{array}$	N4—C24—N2—C23 N4—C24—N2—C27 N1—C23—N2—C24 N1—C23—N2—C27 N3—C27—N2—C24 N3—C27—N2—C23 N1—C22—N3—C25 N1—C22—N3—C27 N1—C22—N3—Ag3 ⁱⁱⁱ N4—C25—N3—C27 N4—C25—N3—C27 N4—C25—N3—Ag3 ⁱⁱⁱ	-59.0 (4) 59.8 (3) 59.1 (4) -59.7 (3) -60.2 (3) 59.0 (3) -58.4 (3) 58.1 (3) -175.7 (2) 59.0 (3) -57.6 (3) 176.85 (19)
C18—C19—C20—C15 C16—C15—C20—C19 S2—C15—C20—C19 S1—O2'—O2—O3' O2'—O2—O3'—O3 O2'—O2—O3'—O3 O2'—O2—O3'—S1 O2—O3'—O3—S1 S3—O7'—O7—O9' N3 ^{iii} —Ag3—O9—O9' N11—Ag3—O9—O9' N3 ^{iii—Ag3—O9—O9' N3^{iii—Ag3—O9—O9'}}	0.8 (6) -1.3 (6) -179.4 (3) 7.9 (10) 15.1 (17) 24.6 (8) -9.5 (12) -21.5 (6) -19.8 (9) -20.0 (6) 111.2 (6) -137.2 (6) -3.3 (4)	N4—C24—N2—C23 N4—C24—N2—C27 N1—C23—N2—C24 N1—C23—N2—C27 N3—C27—N2—C24 N3—C27—N2—C23 N1—C22—N3—C25 N1—C22—N3—C27 N1—C22—N3—Ag3 ⁱⁱⁱ N4—C25—N3—C22 N4—C25—N3—C27 N4—C25—N3—Ag3 ⁱⁱⁱ N2—C27—N3—C22	$\begin{array}{c} -59.0 (4) \\ 59.8 (3) \\ 59.1 (4) \\ -59.7 (3) \\ -60.2 (3) \\ 59.0 (3) \\ -58.4 (3) \\ 58.1 (3) \\ -175.7 (2) \\ 59.0 (3) \\ -57.6 (3) \\ 176.85 (19) \\ -58.0 (3) \end{array}$
C18—C19—C20—C15 C16—C15—C20—C19 S2—C15—C20—C19 S1—O2'—O2—O3' O2'—O2—O3'—O3 S1—O2—O3'—O3 O2'—O2—O3'—S1 O2—O3'—O3—S1 S3—O7'—O7—O9' N 3ii —Ag3—O9—O9' N11—Ag3—O9—O9' N 3ii —Ag3—O9—S3 N8—Ag3—O9—S3	$\begin{array}{l} 0.8 \ (6) \\ -1.3 \ (6) \\ -179.4 \ (3) \\ 7.9 \ (10) \\ 15.1 \ (17) \\ 24.6 \ (8) \\ -9.5 \ (12) \\ -21.5 \ (6) \\ -19.8 \ (9) \\ -20.0 \ (6) \\ 111.2 \ (6) \\ -137.2 \ (6) \\ -3.3 \ (4) \\ 127.9 \ (4) \end{array}$	N4—C24—N2—C23 N4—C24—N2—C27 N1—C23—N2—C24 N1—C23—N2—C27 N3—C27—N2—C24 N3—C27—N2—C23 N1—C22—N3—C25 N1—C22—N3—C27 N1—C22—N3—Ag3 ⁱⁱⁱ N4—C25—N3—C27 N4—C25—N3—C27 N4—C25—N3—C27 N4—C25—N3—C22 N2—C27—N3—C22 N2—C27—N3—C25	$\begin{array}{c} -59.0 (4) \\ 59.8 (3) \\ 59.1 (4) \\ -59.7 (3) \\ -60.2 (3) \\ 59.0 (3) \\ -58.4 (3) \\ 58.1 (3) \\ -175.7 (2) \\ 59.0 (3) \\ -57.6 (3) \\ 176.85 (19) \\ -58.0 (3) \\ 58.7 (3) \end{array}$
C18—C19—C20—C15 C16—C15—C20—C19 S2—C15—C20—C19 S1—O2'—O2—O3' O2'—O2—O3'—O3 O2'—O2—O3'—O3 O2'—O2—O3'—S1 O2—O3'—O3—S1 S3—O7'—O7—O9' N3 ^{ii} —Ag3—O9—O9' N11—Ag3—O9—O9' N3 ^{ii} —Ag3—O9—S3 N8—Ag3—O9—S3 N11—Ag3—O9—S3	$\begin{array}{l} 0.8 \ (6) \\ -1.3 \ (6) \\ -179.4 \ (3) \\ 7.9 \ (10) \\ 15.1 \ (17) \\ 24.6 \ (8) \\ -9.5 \ (12) \\ -21.5 \ (6) \\ -19.8 \ (9) \\ -20.0 \ (6) \\ 111.2 \ (6) \\ -137.2 \ (6) \\ -3.3 \ (4) \\ 127.9 \ (4) \\ -120.5 \ (4) \end{array}$	N4—C24—N2—C23 N4—C24—N2—C27 N1—C23—N2—C24 N1—C23—N2—C24 N3—C27—N2—C24 N3—C27—N2—C23 N1—C22—N3—C25 N1—C22—N3—C25 N1—C22—N3—Ag3 ⁱⁱⁱ N4—C25—N3—C27 N4—C25—N3—C27 N4—C25—N3—Ag3 ⁱⁱⁱ N2—C27—N3—C25 N2—C27—N3—C25 N2—C27—N3—Ag3 ⁱⁱⁱ	$\begin{array}{c} -59.0 (4) \\ 59.8 (3) \\ 59.1 (4) \\ -59.7 (3) \\ -60.2 (3) \\ 59.0 (3) \\ -58.4 (3) \\ 58.1 (3) \\ -175.7 (2) \\ 59.0 (3) \\ -57.6 (3) \\ 176.85 (19) \\ -58.0 (3) \\ 58.7 (3) \\ 179.78 (19) \end{array}$
C18—C19—C20—C15 C16—C15—C20—C19 S2—C15—C20—C19 S1—O2'—O2—O3' O2'—O2—O3'—O3 O2'—O2—O3'—O3 O2'—O2—O3'—S1 O2—O3'—O3—S1 S3—O7'—O7—O9' N3 ^{iii—Ag3—O9—O9' N11—Ag3—O9—O9' N11—Ag3—O9—S3 N8—Ag3—O9—S3 N11—Ag3—O9—S3 O9'—Ag3—O9—S3}	$\begin{array}{l} 0.8 \ (6) \\ -1.3 \ (6) \\ -179.4 \ (3) \\ 7.9 \ (10) \\ 15.1 \ (17) \\ 24.6 \ (8) \\ -9.5 \ (12) \\ -21.5 \ (6) \\ -19.8 \ (9) \\ -20.0 \ (6) \\ 111.2 \ (6) \\ -137.2 \ (6) \\ -3.3 \ (4) \\ 127.9 \ (4) \\ -120.5 \ (4) \\ 16.7 \ (5) \end{array}$	N4—C24—N2—C23 N4—C24—N2—C27 N1—C23—N2—C24 N1—C23—N2—C24 N3—C27—N2—C24 N3—C27—N2—C23 N1—C22—N3—C25 N1—C22—N3—C27 N1—C22—N3—Ag3 ⁱⁱⁱ N4—C25—N3—C27 N4—C25—N3—C27 N4—C25—N3—C27 N4—C25—N3—C27 N4—C25—N3—C25 N2—C27—N3—C25 N2—C27—N3—C25 N2—C27—N3—Ag3 ⁱⁱⁱ N3—C25—N4—C26	$\begin{array}{c} -59.0 (4) \\ 59.8 (3) \\ 59.1 (4) \\ -59.7 (3) \\ -60.2 (3) \\ 59.0 (3) \\ -58.4 (3) \\ 58.1 (3) \\ -175.7 (2) \\ 59.0 (3) \\ -57.6 (3) \\ 176.85 (19) \\ -58.0 (3) \\ 58.7 (3) \\ 179.78 (19) \\ -59.8 (3) \end{array}$
C18—C19—C20—C15 C16—C15—C20—C19 S2—C15—C20—C19 S1—O2'—O2—O3' O2'—O2—O3'—O3 O2'—O2—O3'—O3 O2'—O2—O3'—S1 O2—O3'—O3—S1 S3—O7'—O7—O9' N3 ⁱⁱ —Ag3—O9—O9' N11—Ag3—O9—O9' N3 ⁱⁱ —Ag3—O9—S3 N8—Ag3—O9—S3 N11—Ag3—O9—S3 O9'—Ag3—O9—S3 Ag3—O9—O9'—S3	$\begin{array}{l} 0.8 \ (6) \\ -1.3 \ (6) \\ -179.4 \ (3) \\ 7.9 \ (10) \\ 15.1 \ (17) \\ 24.6 \ (8) \\ -9.5 \ (12) \\ -21.5 \ (6) \\ -19.8 \ (9) \\ -20.0 \ (6) \\ 111.2 \ (6) \\ -137.2 \ (6) \\ -3.3 \ (4) \\ 127.9 \ (4) \\ -120.5 \ (4) \\ 16.7 \ (5) \\ 165.5 \ (4) \end{array}$	$\begin{array}{c} N4-C24-N2-C23\\ N4-C24-N2-C27\\ N1-C23-N2-C24\\ N1-C23-N2-C27\\ N3-C27-N2-C24\\ N3-C27-N2-C23\\ N1-C22-N3-C25\\ N1-C22-N3-C25\\ N1-C22-N3-C27\\ N1-C22-N3-C27\\ N4-C25-N3-C22\\ N4-C25-N3-C27\\ N4-C25-N3-C27\\ N4-C25-N3-C25\\ N2-C27-N3-C25\\ N2-C27-N3-C25\\ N2-C27-N3-C25\\ N2-C27-N3-C26\\ N3-C25-N4-C26\\ N3-C25-N4-C24\\ \end{array}$	$\begin{array}{c} -59.0 (4) \\ 59.8 (3) \\ 59.1 (4) \\ -59.7 (3) \\ -60.2 (3) \\ 59.0 (3) \\ -58.4 (3) \\ 58.1 (3) \\ -175.7 (2) \\ 59.0 (3) \\ -57.6 (3) \\ 176.85 (19) \\ -58.0 (3) \\ 58.7 (3) \\ 179.78 (19) \\ -59.8 (3) \\ 57.9 (3) \end{array}$
C18—C19—C20—C15 C16—C15—C20—C19 S2—C15—C20—C19 S1—O2'—O2—O3' O2'—O2—O3'—O3 S1—O2—O3'—O3 O2'—O2—O3'—S1 O2—O3'—O3—S1 S3—O7'—O7—O9' N 3ii —Ag3—O9—O9' N11—Ag3—O9—O9' N 3ii —Ag3—O9—S3 N8—Ag3—O9—S3 N11—Ag3—O9—S3 O9'—Ag3—O9—S3 Ag3—O9—O9'—S3 S3—O9—O9'—S3 S3—O9—O9'—O7	$\begin{array}{l} 0.8 \ (6) \\ -1.3 \ (6) \\ -1.79.4 \ (3) \\ 7.9 \ (10) \\ 15.1 \ (17) \\ 24.6 \ (8) \\ -9.5 \ (12) \\ -21.5 \ (6) \\ -19.8 \ (9) \\ -20.0 \ (6) \\ 111.2 \ (6) \\ -137.2 \ (6) \\ -3.3 \ (4) \\ 127.9 \ (4) \\ -120.5 \ (4) \\ 16.7 \ (5) \\ 165.5 \ (4) \\ -8.3 \ (10) \end{array}$	$\begin{array}{c} N4-C24-N2-C23\\ N4-C24-N2-C27\\ N1-C23-N2-C24\\ N1-C23-N2-C27\\ N3-C27-N2-C24\\ N3-C27-N2-C23\\ N1-C22-N3-C25\\ N1-C22-N3-C27\\ N1-C22-N3-C27\\ N1-C22-N3-C27\\ N4-C25-N3-C22\\ N4-C25-N3-C27\\ N4-C25-N3-C27\\ N4-C25-N3-C22\\ N2-C27-N3-C25\\ N2-C27-N3-C25\\ N2-C27-N3-C25\\ N2-C25-N4-C26\\ N3-C25-N4-C24\\ N3-C25-N4-C24\\ N3-C25-N4-Ag2\\ \end{array}$	$\begin{array}{r} -59.0 (4) \\ 59.8 (3) \\ 59.1 (4) \\ -59.7 (3) \\ -60.2 (3) \\ 59.0 (3) \\ -58.4 (3) \\ 58.1 (3) \\ -175.7 (2) \\ 59.0 (3) \\ -57.6 (3) \\ 176.85 (19) \\ -58.0 (3) \\ 58.7 (3) \\ 179.78 (19) \\ -59.8 (3) \\ 57.9 (3) \\ -174.78 (18) \end{array}$
C18—C19—C20—C15 C16—C15—C20—C19 S2—C15—C20—C19 S1—O2'—O2—O3' O2'—O2—O3'—O3 O2'—O2—O3'—O3 O2'—O2—O3'—S1 O2—O3'—O3—S1 S3—O7'—O7—O9' N 3^{ii} —Ag3—O9—O9' N11—Ag3—O9—O9' N11—Ag3—O9—S3 N8—Ag3—O9—S3 N11—Ag3—O9—S3 O9'—Ag3—O9—S3 Ag3—O9—O9'—S3 S3—O9—O9'—O7 Ag3—O9—O9'—O7	$\begin{array}{l} 0.8 \ (6) \\ -1.3 \ (6) \\ -179.4 \ (3) \\ 7.9 \ (10) \\ 15.1 \ (17) \\ 24.6 \ (8) \\ -9.5 \ (12) \\ -21.5 \ (6) \\ -19.8 \ (9) \\ -20.0 \ (6) \\ 111.2 \ (6) \\ -137.2 \ (6) \\ -3.3 \ (4) \\ 127.9 \ (4) \\ -120.5 \ (4) \\ 16.7 \ (5) \\ 165.5 \ (4) \\ -8.3 \ (10) \\ 157.3 \ (14) \end{array}$	$\begin{array}{c} N4-C24-N2-C23\\ N4-C24-N2-C27\\ N1-C23-N2-C24\\ N1-C23-N2-C27\\ N3-C27-N2-C24\\ N3-C27-N2-C23\\ N1-C22-N3-C25\\ N1-C22-N3-C25\\ N1-C22-N3-C27\\ N1-C22-N3-C27\\ N4-C25-N3-C22\\ N4-C25-N3-C22\\ N4-C25-N3-C22\\ N2-C27-N3-C25\\ N2-C27-N3-C25\\ N2-C27-N3-C25\\ N2-C27-N3-C25\\ N2-C25-N4-C26\\ N3-C25-N4-C24\\ N3-C25-N4-C24\\ N3-C25-N4-C24\\ N3-C25-N4-C25\\ \end{array}$	$\begin{array}{c} -59.0 (4) \\ 59.8 (3) \\ 59.1 (4) \\ -59.7 (3) \\ -60.2 (3) \\ 59.0 (3) \\ -58.4 (3) \\ 58.1 (3) \\ -175.7 (2) \\ 59.0 (3) \\ -57.6 (3) \\ 176.85 (19) \\ -58.0 (3) \\ 58.7 (3) \\ 179.78 (19) \\ -59.8 (3) \\ 57.9 (3) \\ -174.78 (18) \\ 60.1 (3) \end{array}$
C18—C19—C20—C15 C16—C15—C20—C19 S2—C15—C20—C19 S1—O2'—O2—O3' O2'—O2—O3'—O3 O2'—O2—O3'—O3 O2'—O2—O3'—S1 O2—O3'—O3—S1 S3—O7'—O7—O9' N3 ^{iii—Ag3—O9—O9' N11—Ag3—O9—O9' N3^{iii—Ag3—O9—S3 N8—Ag3—O9—S3 N11—Ag3—O9—S3 O9'—Ag3—O9—S3 Ag3—O9—O9'—S3 S3—O9—O9'—O7 Ag3—O9—O9'—O7 S3—O9—O9'—Ag3}}	$\begin{array}{l} 0.8 \ (6) \\ -1.3 \ (6) \\ -1.79.4 \ (3) \\ 7.9 \ (10) \\ 15.1 \ (17) \\ 24.6 \ (8) \\ -9.5 \ (12) \\ -21.5 \ (6) \\ -19.8 \ (9) \\ -20.0 \ (6) \\ 111.2 \ (6) \\ -137.2 \ (6) \\ -3.3 \ (4) \\ 127.9 \ (4) \\ -120.5 \ (4) \\ 16.7 \ (5) \\ 165.5 \ (4) \\ -8.3 \ (10) \\ 157.3 \ (14) \\ -165.5 \ (4) \end{array}$	$\begin{array}{c} N4-C24-N2-C23\\ N4-C24-N2-C27\\ N1-C23-N2-C24\\ N1-C23-N2-C24\\ N3-C27-N2-C24\\ N3-C27-N2-C23\\ N1-C22-N3-C25\\ N1-C22-N3-C25\\ N1-C22-N3-C27\\ N1-C22-N3-C27\\ N4-C25-N3-C22\\ N4-C25-N3-C27\\ N4-C25-N3-C27\\ N4-C25-N3-C25\\ N2-C27-N3-C25\\ N2-C27-N3-C25\\ N2-C27-N3-C25\\ N2-C27-N3-C26\\ N3-C25-N4-C26\\ N3-C25-N4-C24\\ N3-C25-N4-C24\\ N3-C25-N4-C24\\ N1-C26-N4-C25\\ N1-C26-N4-C24\\ \end{array}$	$\begin{array}{r} -59.0 (4) \\ 59.8 (3) \\ 59.1 (4) \\ -59.7 (3) \\ -60.2 (3) \\ 59.0 (3) \\ -58.4 (3) \\ 58.1 (3) \\ -175.7 (2) \\ 59.0 (3) \\ -57.6 (3) \\ 176.85 (19) \\ -58.0 (3) \\ 58.7 (3) \\ 179.78 (19) \\ -59.8 (3) \\ 57.9 (3) \\ -174.78 (18) \\ 60.1 (3) \\ -57.5 (3) \end{array}$

\$3-07-09'-09	9.4 (12)	N2—C24—N4—C25	-58.8 (3)
O7'—O7—O9'—S3	25.1 (11)	N2—C24—N4—C26	58.1 (3)
O7'—O7—O9'—Ag3	178.1 (10)	N2—C24—N4—Ag2	174.1 (2)
S3—O7—O9'—Ag3	153.0 (11)	N5—Ag2—N4—C25	-39.8 (2)
N3 ⁱⁱ —Ag3—O9'—O9	162.5 (6)	N7 ⁱⁱ —Ag2—N4—C25	136.98 (19)
N8—Ag3—O9'—O9	-69.6 (6)	N5—Ag2—N4—C26	-156.63 (18)
N11—Ag3—O9'—O9	45.6 (6)	N7 ⁱⁱ —Ag2—N4—C26	20.2 (2)
N3 ⁱⁱ —Ag3—O9'—S3	132.5 (14)	N5—Ag2—N4—C24	84.9 (2)
N8—Ag3—O9'—S3	-99.6 (14)	N7 ⁱⁱ —Ag2—N4—C24	-98.3 (2)
N11—Ag3—O9'—S3	15.5 (15)	N6—C30—N5—C28	59.2 (3)
O9—Ag3—O9'—S3	-30.1 (10)	N6—C30—N5—C29	-58.5 (3)
N3 ⁱⁱ —Ag3—O9'—O7	5.8 (10)	N6—C30—N5—Ag2	-179.4 (2)
N8—Ag3—O9'—O7	133.7 (9)	N7—C28—N5—C30	-59.2 (3)
N11—Ag3—O9'—O7	-111.2 (9)	N7—C28—N5—C29	58.5 (3)
O9—Ag3—O9'—O7	-156.8 (14)	N7—C28—N5—Ag2	177.2 (2)
O3—O3'—S1—O1'	-27.9 (7)	N8—C29—N5—C30	58.5 (3)
O2—O3'—S1—O1'	132.0 (5)	N8—C29—N5—C28	-58.7 (3)
O3—O3'—S1—O2	-159.9 (6)	N8—C29—N5—Ag2	-178.0 (2)
O3—O3'—S1—O1	-65.9 (9)	N7 ⁱⁱ —Ag2—N5—C30	115.7 (2)
O2—O3'—S1—O1	94.1 (7)	N4—Ag2—N5—C30	-67.7 (2)
O2—O3'—S1—O3	159.9 (6)	$N7^{ii}$ —Ag2—N5—C28	-123.9 (2)
O3—O3'—S1—O2'	-155.7 (5)	N4—Ag2—N5—C28	52.7 (2)
O2—O3'—S1—O2'	4.2 (5)	N7 ⁱⁱ —Ag2—N5—C29	-5.1 (2)
O3—O3'—S1—C1	97.2 (5)	N4—Ag2—N5—C29	171.48 (19)
O2—O3'—S1—C1	-102.9 (3)	N8—C31—N6—C30	-59.7 (4)
O1—O1'—S1—O3'	-138.9 (7)	N8—C31—N6—C33	58.1 (3)
01—01'—S1—02	-48.7 (9)	N5-C30-N6-C31	58.7 (4)
O1—O1'—S1—O3	-159.1 (7)	N5-C30-N6-C33	-59.1 (4)
O1—O1'—S1—O2'	-14.5 (8)	N7—C33—N6—C31	-58.9 (3)
O1—O1'—S1—C1	95.5 (6)	N7—C33—N6—C30	58.7 (4)
O2'—O2—S1—O3'	173.3 (8)	N8—C32—N7—C33	-57.1 (3)
O2'—O2—S1—O1'	59.7 (9)	N8—C32—N7—C28	58.5 (3)
O3'—O2—S1—O1'	-113.6 (6)	N8—C32—N7—Ag2 ⁱⁱⁱ	176.5 (2)
O2'—O2—S1—O1	32.9 (7)	N6—C33—N7—C32	58.0 (3)
O3'—O2—S1—O1	-140.3 (4)	N6—C33—N7—C28	-57.6 (3)
O2'—O2—S1—O3	157.7 (7)	N6—C33—N7—Ag2 ⁱⁱⁱ	178.89 (19)
O3'—O2—S1—O3	-15.5 (5)	N5—C28—N7—C32	-57.7 (4)
O3'—O2—S1—O2'	-173.3 (8)	N5—C28—N7—C33	58.2 (3)
02'—02—S1—C1	-84.2 (7)	N5—C28—N7—Ag2 ⁱⁱⁱ	-174.2 (2)
O3'-O2-S1-C1	102.5 (4)	N7—C32—N8—C29	-59.4 (4)
O1'-O1-S1-O3'	67.8 (10)	N7—C32—N8—C31	56.7 (3)
O1'O1S1O2	146.7 (6)	N7—C32—N8—Ag3	-178.3 (2)
01'-01-S1-03	22.2 (7)	N5-C29-N8-C32	58.7 (4)
01'-01-S1-02'	166.3 (7)	N5-C29-N8-C31	-58.2 (3)
01'—01—S1—C1	-95.3 (6)	N5—C29—N8—Ag3	174.5 (2)
O3'—O3—S1—O1'	156.3 (6)	N6-C31-N8-C32	-57.1 (3)
O3'—O3—S1—O2	19.8 (6)	N6—C31—N8—C29	59.4 (3)

O3'—O3—S1—O1	143.9 (5)	N6—C31—N8—Ag3	-176.2 (2)
O3'—O3—S1—O2'	42.9 (9)	N3 ⁱⁱ —Ag3—N8—C32	145.73 (18)
O3'-O3-S1-C1	-98.8 (5)	N11—Ag3—N8—C32	-67.5 (2)
O2—O2'—S1—O3'	-6.4 (8)	O9—Ag3—N8—C32	21.0 (2)
O2—O2'—S1—O1'	-140.5 (6)	O9'—Ag3—N8—C32	44.7 (3)
O2—O2'—S1—O1	-148.7 (7)	N3 ⁱⁱ —Ag3—N8—C29	28.8 (2)
O2—O2'—S1—O3	-37.1 (11)	N11—Ag3—N8—C29	175.6 (2)
O2—O2'—S1—C1	105.9 (6)	O9—Ag3—N8—C29	-95.9 (2)
C2—C1—S1—O3'	-3.4 (5)	O9'—Ag3—N8—C29	-72.2 (3)
C6—C1—S1—O3'	175.2 (5)	$N3^{ii}$ —Ag3—N8—C31	-93.7 (2)
C2-C1-S1-O1'	130.3 (4)	N11—Ag3—N8—C31	53.0 (2)
C6—C1—S1—O1'	-51.1 (5)	O9—Ag3—N8—C31	141.5 (2)
C2-C1-S1-O2	-74.7 (4)	O9'—Ag3—N8—C31	165.2 (3)
C6—C1—S1—O2	103.9 (4)	N11—C34—N9—C35	57.2 (3)
C2-C1-S1-O1	166.0 (4)	N11—C34—N9—C36	-59.0 (3)
C6—C1—S1—O1	-15.4 (4)	N11—C34—N9—Ag1 ^{iv}	-175.7 (2)
C2—C1—S1—O3	45.7 (4)	N12-C35-N9-C34	-58.5 (3)
C6—C1—S1—O3	-135.7 (4)	N12—C35—N9—C36	57.6 (3)
C2-C1-S1-O2'	-112.6 (5)	$N12$ $C35$ $N9$ $\Delta \sigma 1^{iv}$	-179.08 (19)
C6-C1-S1-O2'	66 Q (5)	N10-C36-N9-C34	58 6 (3)
C16-C15-S2-O4	-1095(3)	N10 - C36 - N9 - C35	-574(3)
C_{20} C_{15} S_{2} C_{4}	68 6 (3)	N10 C36 N9 $\Delta \alpha 1^{iv}$	174.05(17)
$C_{16} = C_{15} = S_{2} = O_{5}$	10.3(4)	N11_C38_N10_C39	-57.6(3)
$C_{10} = C_{15} = S_{2} = O_{5}$	-1716(3)	N11-C38-N10-C36	59.1.(3)
$C_{16} = C_{15} = S_{2} = O_{6}$	130.8 (3)	$N11 C22 N10 A \sim 1^{111}$	1763(2)
$C_{10} = C_{15} = S_{2} = O_{6}$	-51.1(3)	N12_C30_N10_C38	57 8 (3)
09-09'-53-08	51.1 (5) 71 8 (8)	N12 - C39 - N10 - C36	-586(3)
07 00' S3 08	-1143(5)		-17778(18)
07-07-53-08	114.3(3)	N0_C2(_N10_C28	59 4 (2)
$Ag_{3} = 09 = 53 = 08$	101.0(13) -172.0(8)	N9-C36-N10-C38	-38.4(3)
09-09-33-07	-1/3.9(8)		178 20 (18)
Ag3-09-53-07	-144.8 (15)	N9—C36—N10—Ag1	-1/8.29 (18)
07-09-53-09	1/3.9(8)	N9-C34-N11-C38	59.0 (3)
$Ag_{3} = 09 = 53 = 09$	29.2 (10)	N9 - C34 - N11 - C37	-57.5(3)
09-09-53-07	1/3.8 (0)	N9—C34—N11—Ag3	50.2 (2)
$\sqrt{-09} = 35 = 07$	-12.2(0) -157.0(13)	N10 - C38 - N11 - C34	-39.3 (3) 57.6 (3)
$Ag_{3}=09=33=07$	-73.8(7)	N10-C38-N11-C37	-1788(2)
07 - 09' - 53 - 68	100.2(4)	N12-C37-N11-C34	584(3)
$A_{93} - O_{9}' - S_{3} - C_{8}$	-44 6 (15)	N12 - C37 - N11 - C38	-57.9(3)
07'-07-\$3-09'	-1610(9)	N12-C37-N11-Ag3	-1795(2)
07'-07-\$3-08	-41 1 (8)	N_{2}^{ii} Ag2 N_{11} C_{24}	66 1 (2)
$0^{9}-0^{7}-8^{3}-0^{8}$	1199(5)	$NS = Ag_{3} = N11 = C_{34}$	-85 2 (2)
07'-07	-165 5 (7)	$09 = A\sigma^3 = N11 = C^3 4$	-172.0(2)
09'-07-83-09	-4 5 (6)	09'-Ag3-N11-C34	172.0(2)
$0^{9}-0^{7}-8^{3}-0^{7}$	161.0 (9)	$N2^{ii}$ A r^2 N11 C29	-175 77 (19)
07' 07 83 68	87.0 (7)	$\frac{1}{100} - \frac{1}{100} - \frac{1}$	(1)
0' - 07 - 53 - 00	-1120(5)	$\frac{1}{10} - \frac{1}{10} - \frac{1}{10} - \frac{1}{10} - \frac{1}{10} = \frac{1}{10} $	-53 Q (2)
07 07-03-00	112.0 (3)	07 Agj-111-030	55.7 (2)

Ag3—O9—S3—O9'	-20.2 (6)	O9'—Ag3—N11—C38	-71.8 (3)
O9'—O9—S3—O8	-127.9 (7)	N3 ⁱⁱ —Ag3—N11—C37	-55.2 (2)
Ag3—09—S3—08	-148.0 (3)	N8—Ag3—N11—C37	153.4 (2)
O9'—O9—S3—O7	6.0 (7)	O9—Ag3—N11—C37	66.6 (2)
Ag3—O9—S3—O7	-14.2 (5)	O9'—Ag3—N11—C37	48.8 (3)
O9'—O9—S3—O7'	-11.3 (11)	N11—C37—N12—C35	-59.2 (3)
Ag3—O9—S3—O7'	-31.5 (10)	N11-C37-N12-C39	59.1 (3)
O9'—O9—S3—C8	119.9 (7)	N9-C35-N12-C37	59.7 (3)
Ag3—O9—S3—C8	99.7 (4)	N9—C35—N12—C39	-58.6 (3)
O7—O7'—S3—O9'	18.1 (8)	N10-C39-N12-C37	-59.0 (3)
O7—O7'—S3—O8	146.3 (6)	N10-C39-N12-C35	58.8 (3)
Symmetry codes: (i) $x-1$, y , z ; (ii) $-x+3/2$	¹ 2, <i>y</i> −1/2, − <i>z</i> +3/2; (iii) − <i>x</i> +3	$\frac{3}{2}$, $y+\frac{1}{2}$, $-z+\frac{3}{2}$; (iv) $x+1$, y , z .	

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O1W—H1WA···O8 ⁱⁱ	0.87 (2)	1.92 (2)	2.782 (5)	175 (4)
O1W—H1WB···O6 ⁱⁱ	0.82 (2)	2.10 (2)	2.907 (4)	166 (4)
O2W—H2WA···O5 ⁱⁱⁱ	0.83 (2)	2.16 (2)	2.958 (4)	163 (4)
O2W—H2WB···O1 ^{iv}	0.84 (2)	1.83 (3)	2.612 (6)	155 (4)
O3W—H3WA···O2 ^v	0.80 (2)	2.45 (3)	3.096 (7)	139 (4)
O3W—H3WB···O5	0.80 (2)	2.15 (2)	2.908 (5)	160 (4)
O4W—H4WB···O7 ⁱⁱⁱ	0.88 (2)	1.99 (3)	2.838 (7)	160 (4)
~		· · · · · ·		

Symmetry codes: (ii) -x+3/2, y-1/2, -z+3/2; (iii) -x+3/2, y+1/2, -z+3/2; (iv) x+1, y, z; (v) -x+1/2, y+1/2, -z+3/2.

Fig. 2

